• Mon GéoSource
  •  
  •  
  •  

Species and habitats - Pleuronectes platessa - Nurseries - Preferential habitat modellised by Generalised Linear Modelling and its uncertainty for YFS survey

Modelised abundances of several species in coastal nurseries or prediction uncertainty.

Simple

Autres appellations ou acronymes
YFS_species_model
Date ( Publication )
2009-12-31T00:00:00
Identificateur
CHARM_PLEUPLA_NURS_GLM_MOD_ERR_R
Forme de la présentation
Carte numérique
Autres informations de référence
Source CHARM Consortium
Reconnaissance
IFREMER / CEFAS
Reconnaissance
CHARM consortium
Etat
Finalisé
Fournisseur
Center for Environment, Fisheries & Aquaculture Science - Steve Mackinson ( )
Fournisseur
Ifremer - Sandrine Vaz
Gestionnaire
CHARM Consortium - CHARM Consortium
Fréquence de mise à jour
Lorsque nécessaire
Thèmes Sextant Thèmes Sextant ( Thème )
  • /Milieu biologique/Espèces/Espèces d'intérêt halieutique
Mots clés ( Discipline )
  • espèces
  • CHARM
GEMET - INSPIRE themes, version 1.0 GEMET - INSPIRE themes, version 1.0 ( Thème )
  • Habitats et biotopes
external.theme.gemet external.theme.gemet ( Thème )
  • ressource halieutique
Mots clés ( Thème )
  • zone fonctionnelle halieutique
Limitation d'utilisation
research-only
Contraintes d'accès
Licence
Autres contraintes
Has to be cited this way in maps : "Source CHARM Consortium"
Autres contraintes
Has to be cited this way in bibliography : "Carpentier A, Martin CS, Vaz S (Eds.), 2009. Channel Habitat Atlas for marine Resource Management, final report / Atlas des habitats des ressources marines de la Manche orientale, rapport final (CHARM phase II). INTERREG 3a Programme, IFREMER, Boulogne-sur-mer, France. 626 pp. & CD-rom"
Type de représentation spatiale
Raster
Dénominateur de l'échelle
2500
Langue
fr
Langue
en
Jeu de caractères
Utf8
Catégorie ISO
  • Biote
Description de l'environnement de travail
Microsoft Windows XP ; ESRI ArcGIS 9.x
Identifiant géographique
Eastern English Channel
N
S
E
W


Date de début
1977-01-01
Date de fin
2006-12-31
Nom du système de référence
WGS 84 (EPSG:4326)
Dimensions
2
Noms des axes
Axe - X
Nombre de pixel
489
Résolution
0.009  degree
Noms des axes
Axe - Y
Nombre de pixel
278
Résolution
0.009  degree
Type de raster
Surface
Disponibilité des paramètres de transformation
Non

Distributeur

Distributeur
Ifremer - Centre de Brest
Ressource en ligne
CHARM_PLEUPLA_NURS_GLM_R ( OGC:WMS )

Preferential habitat

Ressource en ligne
CHARM_PLEUPLA_NURS_GLM_MOD_ERR_R ( OGC:WMS )

Model error

Ressource en ligne
CHARM web site ( WWW:LINK )

CHARM web site

Protocole
COPYFILE
Nom
Preferential habitat
Description
Preferential habitat
Protocole
COPYFILE
Nom
Model error
Description
Model error
Niveau
Jeu de données
Généralités sur la provenance
Combinations of the French YFS and the British YFS.
Description
GLM describes the mean response of a species abundance or presence probability according to environmental conditions (figure 2). In this type of model, a linear prediction is related to the mean of the response variable through a link function (e.g. identity function for a normally distributed variable, or logit function for binary data). Corresponding habitat models required a two step modelling procedure. The presence probability of the considered species as a function of environmental factors is first modelled using presence-absence data, independently from abundance data. Then, the response in terms of abundance is modelled in case of presence only. The species¿ habitat can finally be predicted by combining the presence-absence model with the model of abundance response in case of presence. This procedure allows circumventing the problem of atypical distribution of count data which include numerous observations with value zero, which is common in species abundance data (Stefánsson, 1996; Barry & Welsh, 2002). In this study, model selection was carried out by initially fitting a complete model including all available explanatory variables (continuous parameters were introduced as second order polynomials, nominal variables as factors and all first order interactions between environmental parameters were considered; note that interactions were not tested for the egg developmental stage). The selected environment predictors were: temperature, salinity, bed shear stress, depth, chlorophyll a concentration (only for the egg stage), fluorescence (only for the larval stage) and seabed sediment type. Although the first six factors were regarded as continuous covariables, sediment type (mud, fine sand, coarse sand, gravel and pebble) was introduced in the model as a categorical factor. The GLM model was optimised through backward selection based on Chi-square or F-test significance tests (Venables & Ripley, 2002). This approach was taken rather than Akaike Information Criterion reduction (or AIC; Akaike, 1974) to be coherent with quantile regression selection procedure which is also based on significance tests. For presence-absence data, binomial modelling with logit link function was chosen to obtain a prediction of the probability of presence of the species considered. For non-null abundance data (i.e. removing zero values), the data was log-transformed to achieve normality, and gaussian modelling with identity link function was used to predict positive density on a log scale. The predicted probability of presence was then multiplied with the positive density prediction, to obtain the final predicted value of abundance (Stefánsson, 1996). For each species considered, the equation of the final habitat model was used to recode digital maps of the environmental factors with the predicted abundance (or presence probability) of the species, using the Raster Calculator tool, thereby producing a habitat map. Prior to this and for each survey, digital (raster) maps of the environmental parameters had been limited to the ranges of values observed during the surveys, so as to avoid extrapolating outside the model development bounds. The resulting habitat maps were further centred and standardised, so that the resulting maps ranged between 0 and 1, thereby permitting an easier comparison amongst results from different stage, species or season (notable exceptions are the habitat maps based on binary data, and the larval stage habitat maps). The spatial distribution of the model error ratios was mapped for each model, the value of 1 corresponding to the maximum possible prediction error. The model prediction error can thus be interpreted as a percentage of model uncertainty.
Description
FYFS plus BYFS surveys
Identifiant de la fiche
b78421b9-1b20-49fe-84b1-cbf0d599efe7 XML
Langue
en
Jeu de caractères
Utf8
Type de ressource
Jeu de données
Date des métadonnées
2020-06-04T00:51:46
Nom du standard de métadonnées
ISO 19115:2003/19139 - SEXTANT
Version du standard de métadonnées
1.0
Point de contact
Ifremer - Fanny Lecuy
 
 

Aperçus

Étendue spatiale

N
S
E
W


Mots clés

zone fonctionnelle halieutique
GEMET - INSPIRE themes, version 1.0
Habitats et biotopes
Thèmes Sextant
/Milieu biologique/Espèces/Espèces d'intérêt halieutique
external.theme.gemet
ressource halieutique

Fourni par

Partager

Ressources associées

Not available


  •  
  •  
  •