• Mon GéoSource
  •  
  •  
  •  

Species and habitats - Solea solea - Nurseries - Preferential habitat modellised by Generalised Linear Modelling from YFS survey

Modelised abundances of Solea solea in coastal nurseries.

Simple

Autres appellations ou acronymes
YFS_species_model
Date ( Publication )
2009-12-31T10:57:00
Identificateur
CHARM_SOLESOL_NURS_GLM_SIMPLE_MOD
Autres informations de référence
CHARM Consortium
Reconnaissance
IFREMER / CEFAS, CHARM Consortium
Etat
Finalisé
Fournisseur
Ifremer - Sandrine Vaz ( )
Fournisseur
Center for Environment, Fisheries & Aquaculture Science - Steve Mackinson ( )
Gestionnaire
CHARM Consortium - CHARM Consortium ( )
Fréquence de mise à jour
Lorsque nécessaire
Thèmes Sextant Thèmes Sextant ( Thème )
  • /Milieu biologique/Espèces/Espèces d'intérêt halieutique
Mots clés ( Discipline )
  • Species data set
  • CHARM
Mots clés ( Thème )
  • ressource halieutique
GEMET - INSPIRE themes, version 1.0 GEMET - INSPIRE themes, version 1.0 ( Thème )
  • Répartition des espèces
Limitation d'utilisation
research-only
Contraintes d'accès
Autres restrictions
Contraintes d'utilisation
Licence
Autres contraintes
Has to be cited this way in maps : "Source CHARM Consortium"
Autres contraintes
Has to be cited this way in bibliography : "Rochette, S., Rivot, E., Morin, J., Mackinson, S., Riou, P., Le Pape, O. (2010). Effect of nursery habitat degradation on flatfish population renewal. Application to Solea solea in the Eastern Channel (Western Europe). Journal of sea Research, Volume 64, p34-44. doi: 10.1016/j.seares.2009.08.003 , Open Access version : http://archimer.ifremer.fr/doc/00008/11921/.”
Type de représentation spatiale
Raster
Dénominateur de l'échelle
2500
Langue
en
Langue
fr
Jeu de caractères
Utf8
Catégorie ISO
  • Océans
  • Biote
  • Environnement
Description de l'environnement de travail
Microsoft Windows XP ; ESRI ArcGIS 9.x
Identifiant géographique
Dover Strait and river Thames mouth
Date de début
1977-01-01T11:08:00
Date de fin
2006-12-31T11:08:00
N
S
E
W


Nom du système de référence
WGS 84 (EPSG:4326)
Dimensions
0
Type de raster
Surface
Disponibilité des paramètres de transformation
Non

Distributeur

Distributeur
Ifremer - Centre de Brest
Ressource en ligne
Charm web site ( WWW:LINK )

Charm web site

Ressource en ligne
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_PROB_PRED ( OGC:WMS )

Presence

Ressource en ligne
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_DENSITIES_PRED ( OGC:WMS )

Density

Ressource en ligne
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_LOGDENSITIES_PRED ( OGC:WMS )

LogDensity

Protocole
COPYFILE
Nom
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_PROB_PRED
Description
Presence
Protocole
COPYFILE
Nom
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_DENSITIES_PRED
Description
Density
Protocole
COPYFILE
Nom
CHARMIII_SOLESOL_NURS_GLM_SIMPLE_MOD_LOGDENSITIES_PRED
Description
LogDensity
Niveau
Jeu de données

Résultat de conformité

Date ( Création )
2011-10-17
Explication
INSPIRE related dataset
Degré de conformité
Non
Généralités sur la provenance
Combinations of the French YFS and the British YFS.
Description
GLM describes the mean response of a species abundance or presence probability according to environmental conditions (figure 2). In this type of model, a linear prediction is related to the mean of the response variable through a link function (e.g. identity function for a normally distributed variable, or logit function for binary data). Corresponding habitat models required a two step modelling procedure. The presence probability of the considered species as a function of environmental factors is first modelled using presence-absence data, independently from abundance data. Then, the response in terms of abundance is modelled in case of presence only. The species habitat can finally be predicted by combining the presence-absence model with the model of abundance response in case of presence. This procedure allows circumventing the problem of atypical distribution of count data which include numerous observations with value zero, which is common in species abundance data (Stefánsson, 1996; Barry & Welsh, 2002). In this study, model selection was carried out by initially fitting a complete model including different explanatory variables (note that interactions were not tested). The selected environment predictors were: Bathymetry and sediment structure a class factors. The GLM model was optimised through backward selection based on Chi-square or F-test significance tests (Venables & Ripley, 2002). This approach was taken rather than Akaike Information Criterion reduction (or AIC; Akaike, 1974). For presence-absence data, binomial modelling with logit link function was chosen to obtain a prediction of the probability of presence of the species considered. For non-null abundance data (i.e. removing zero values), the data was log-transformed to achieve normality, and gaussian modelling with identity link function was used to predict positive density on a log scale. The predicted probability of presence was then multiplied with the positive density prediction, to obtain the final predicted value of abundance (Stefánsson, 1996). For each species considered, the equation of the final habitat model was used to recode digital maps of the environmental factors with the predicted abundance (or presence probability) of the species, thereby producing a habitat map.
Description
FYFS + BYFS surveys
Identifiant de la fiche
d39e01f8-2132-461a-a708-af65da576061 XML
Langue
en
Jeu de caractères
Utf8
Type de ressource
Jeu de données
Date des métadonnées
2020-06-04T00:40:35
Nom du standard de métadonnées
ISO 19115:2003/19139 - SEXTANT
Version du standard de métadonnées
1.0
Point de contact
Ifremer - Sébastien Rochette
 
 

Aperçus

Étendue spatiale

N
S
E
W


Mots clés

ressource halieutique
GEMET - INSPIRE themes, version 1.0
Répartition des espèces
Thèmes Sextant
/Milieu biologique/Espèces/Espèces d'intérêt halieutique

Fourni par

Partager

Ressources associées

Not available


  •  
  •  
  •